IC202A, a New Siderophore with Immunosuppressive Activity Produced by *Streptoalloteichus* sp. 1454-19

II. Physico-chemical Properties and Structure Elucidation

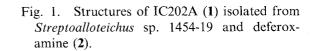
MASATOMI IIJIMA, TETSUYA SOMENO, MASAHIDE AMEMIYA, RYUICHI SAWA[†], HIROSHI NAGANAWA[†], MASAAKI ISHIZUKA^{*} and Tomio Takeuchi

Institute for Chemotherapy, M.C.R.F., 18-24 Aza-Motono, Miyamoto, Numazu-shi, Shizuoka 410-0301, Japan [†] Institute of Microbial Chemistry, M.C.R.F., 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan

(Received for publication September 2, 1998)

IC202A (1) was isolated from the culture filtrate of *Streptoalloteichus* sp. 1454-19. The structure of 1 was determined by spectral analysis including a variety of twodimentional NMR and FAB-MS experiments. IC202A is a ferrioxamine-related compound containing a butylidene N-oxide function.

In the course of our screening program for low molecular weight immunomodulators, we found that *Streptoalloteichus* sp. 1454-19 produced a new immuno-suppressant, IC202A (1). In the preceding paper¹), we have described the fermentation, isolation, and biological activity of IC202A, as well as the taxonomy of the producing strain. This paper describes the structure elucidation of IC202A.


Results and Discussion

IC202A (1) was obtained as a hygroscopic powder. The physico-chemical properties of 1 are summarized in Table 1. The molecular formula of 1 was determined to be $C_{27}H_{52}N_6O_7$ by HRFAB-MS [Calcd. for $C_{27}H_{53}$ - N_6O_7 : m/z 573.3976, Found: m/z 573.3994 (M+H)⁺] and ¹³C NMR spectral data. These physico-chemical properties and NMR spectral data of 1 suggested that 1 was related to a ferrioxamine siderophore compound. 1 was positive to FeCl₃, indicating the presence of a hydroxamate (-N(OH)-CO-) moiety²⁾ in the molecule.

In the ¹³C NMR spectrum, all 27 carbons were visible and the multiplicities were determined by DEPT experiments. The DEPT and HMQC experiments revealed the presence of one methyl, twenty-one methylenes, one olefinic methine, and four carbonyl carbons.

From the ¹H-¹H COSY and HMBC experiments, the

partial structure (Fig. 2) containing a butylidene *N*-oxide moiety was determined as follows. ¹H-¹H COSY spectrum of **1** revealed spin networks from terminal methyl protons (H-33, $\delta_{\rm H}$ 0.95) to an olefinic proton (H-30, $\delta_{\rm H}$ 7.31). In the HMBC spectrum, correlations were revealed between relevant carbons (C-30 to C-33) as shown in Fig. 2. Additionally, the olefinic proton at $\delta_{\rm H}$ 7.31 (H-30) coupled to the other methylene carbon ($\delta_{\rm C}$ 66.7). Judging from the chemical shifts of the methylene [¹³C ($\delta_{\rm C}$ 66.7) and ⁻¹H ($\delta_{\rm H}$ 3.83)], this methylene (C-28) was inferred to be adjacent to either an oxygen or nitrogen atom. Since the methylene protons (H-28) were coupled to the *sp*² carbon (C-30) in the HMBC spectrum, an imino function must be inserted between C-28 and C-30. Furthermore, a higher-field

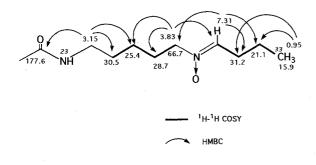

Appearance		Hygroscopic powder	
Molecular formula		$C_{27}H_{52}N_6O_7$	
HRFAB-MS (m/z)			
$(M+H)^+$	Calcd:	573.3976 (for C ₂₇ H ₅₃ N ₆ O ₇)	
	Found:	573.3994	
UV λ_{max} nm(ϵ)		No maxima above 210nm	
IR $v_{max}(KBr)cm^{-1}$		3310, 3090, 2930, 2860, 1625, 1565,	
		1460, 1270, 1225, 1195, 1165, 735	
TLC (Rf value) ^a		0.45 ^b	

Table 1. Physico-chemical properties of IC202A.

^a Silica gel TLC (Merck Art. 1.05715) : BuOH-BuOAc-MeOH-H₂O(2:2:1:1).

^b Detected with I₂ vapor.

Fig. 2. Partial structure of IC202A obtained from ¹H-¹H COSY and HMBC experiments.

shift³⁾ of an azomethine carbon (C-30) and a lower-field shift of C-28 suggested that the nitrogen be oxidized. HRFAB-MS spectrum of 1 showed the fragment ion at m/z 557.4037 (Calcd. for C₂₇H₅₃N₆O₆: 557.4027), originating from the loss of one oxygen atom from the molecular ion, which supported the presence of *N*oxide^{3,4}).

In the vicinity of the *N*-oxide functional group, spin networks from H-25 to H-28 were observed in the ¹H-¹H COSY spectrum. In the HMBC spectrum, a methylene at $\delta_{\rm H}$ 3.15 (H-24) was coupled to C-25 ($\delta_{\rm C}$ 30.5), C-26 ($\delta_{\rm C}$ 25.4) and a carbonyl carbon ($\delta_{\rm C}$ 177.6), resulting in a partial structure as shown in Fig. 2. As far as the remaining part of the structure is concerned, 1 showed two sets of signals due to succinyl (-CO-CH₂-CH₂-CO-) and diaminopentane (-N-(CH₂)₅-N-) moieties in the HMBC spectrum, although the complete assignment was obstructed by severe overlapping of proton signals.

It is well known that many microbes, including Gram-positive Nocardiae and Streptomycete, Gramnegative Pseudomonads⁵⁾ produce various types of ferrioxamines⁶⁾. These ferrioxamines are comprised of alternate repeating units of ω -amino- α -hydroxyaminoalkanes. Since the structure of deferoxamine (C25H48- N_6O_8 , see 2 in Fig. 1), one of ferrioxamines, has been well established, the spectral data of 1 were compared with those of an authentic sample of deferoxamine. The direct comparison of ¹³C NMR in D₂O revealed the following differences: 1) Disappearance of one carbonyl carbon at $\delta_{\rm C}$ 176.2 (C-30) in 2 and appearance of sp^2 methine at $\delta_{\rm C}$ 152.0 (C-30) was shown for 1. 2) Two methylene signals at $\delta_{\rm C}$ 31.2 (C-31) and $\delta_{\rm C}$ 21.1 (C-32) were observed for 1. 3) Down field shift of methylene carbon at $\delta_{\rm C}$ 66.7 (C-28) was observed for 1 by comparing the relevant signal at $\delta_{\rm C}$ 50.4 in **2**. All other signals agreed with each other to within 0.5 ppm. Therefore, the both compounds possess the same partial structure for the N-1 to C-27.

Assignments of ¹H and ¹³C NMR of **1** and **2** are summarized in Table 2.

The structure of 1 thus obtained was further confirmed by FAB-B/E linked scan spectrum, which revealed the characteristic fragment peak of m/z 319 by cleavage at the hydroxyamide. FEISTNER *et al.*⁶⁾ demonstrated the relevant mass fragmentations using a variety of ferrioxamines [NH₂(CH₂)*m*-N(OH)CO(CH₂)₂CONH(CH₂)*n*-N(OH)CO(CH₂)₂CONH(CH₂)*o*-N(OH)-CO-R, m=3,

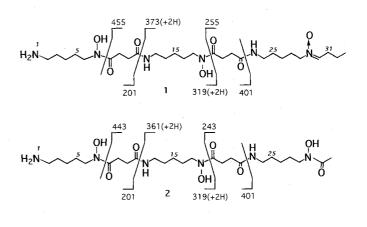

Carbon No.	13C	<u>1</u> 'H		2
Carbon No.	¹³ C	1 ₁₁		
		<u></u>	¹³ C	¹ H
2	42.1 t	2.98 (t,7.6)	42.0 t	2.98(t,7.6)
3	29.1 t	1.65 (m)	29.0 t	1.65 (m)
4	25.4 t	1.50 (m)	25.3 t	1.48 (m)
5	28.0 ^a t	1.65 (m)	28.0 t	1.65 (m)
6	50.4 ^b t	3.65 (m)	50.4 t	3.60 (m)
8	176.6 s	-	176.5 s	-
9	30.3 t	2.80 (m)	30.3 t	2.80(m)
10	33.1° t	2.50 (m)	33.1 t	2.50(m)
11	177.6 s	~	177.5 s	-
13	42.0 t	3.15 (m)	41.9 t	3.16(m)
14	30.6 t	1.50 (m)	30.4 t	1.50(m)
15	25.8 t	1.30 (m)	25.7 t	1.30(m)
16	28.2^{a} t	1.65 (m)	28.0 t	1.65 (m)
17	50.6 ^b t	3.65 (m)	50.4 t	3.62 (m)
19	176.6 s	-	176.6 s	-
20	30.3 t	2.80 (m)	30.3 t	2.80(m)
21	33.2 ^c t	2.50 (m)	33.1 t	2.50(m)
22	177.6 s	-	177.5 s	-
24	41.8 t	3.15 (m)	41.9 t	3.16(m)
25	30.5 t	1.51 (m)	30.4 t	1.50(m)
26	25.4 t	1.29 (m)	25.7 t	1.30(m)
27	28.7 t	1.83 (m)	28.0 t	1.65 (m)
28	66.7 t	3.84 (t,6.8)	50.4 t	3.60 (m)
30	152.0 d	7.31 (t,5.9)	176.2 s	-
31	31.2 t	2.42 (m)	21.9 q	2.14(s)
32	21.1 t	1.55 (m)		
33	15.9 q	0.95 (t,7.5)		

Table 2. 1 H (400 MHz) and 13 C (100 MHz) NMR data of IC202A (1) and deferoxamine (2).

^{a~c} Chemical shifts with the same superscript may be transposed.

4, 5, n=4, 5 o=4, 5)]. As reported prominent fragment ions at m/z 201, 319 and 401 for the compounds (*m* and n=5) in ferrioxamines, both spectra of 1 and 2 also gave these characteristic ions (Fig. 3). This result defined the number *m* and *n* to be 5.

IC202A is a new member of the ferrioxamine family including linear trihydroxamates containing diaminopentane⁷⁾. Within the family, however, IC202A is characterized as being unique due to the presence of a terminal butylidene *N*-oxide moiety. So far as we know, cribrochalinamine oxides A and $B^{3)}$ are the only other natural products having a butylidene *N*-oxide in the molecule. Within the ferrioxamine group, IC202A is the first reported compound having an azomethine *N*-oxide moiety. Fig. 3. FAB-B/E linked scan analysis of IC202A (1) and deferoxamine (2).

Experimental

Deferoxamine mesylate was purchased from Sigma-Aldrich Japan (Tokyo). IR spectra were measured on a Horiba FT-200 fourier transform infrared spectrometer and UV spectra were measured on a Hitachi 228A spectrometer.

¹H (400 MHz) and ¹³C (100 MHz) NMR spectra in D_2O were measured on a JEOL JNM-A-400 spectrometer. Chemical shifts are expressed in δ value (ppm) with 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt as an internal standard and coupling constants are given in *J* (Hz). FAB-MS spectra were measured on a JEOL JMS-SX102 spectrometer.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science, Sports and Culture in Japan.

References

 IIJIMA, M.; T. SOMENO, C. IMADA, Y. OKAMI, M. ISHIZUKA & T. TAKEUCHI: IC202A, a new siderophore with immunosuppressive activity produced by *Streptoallo*- *teichus* sp. 1454-19. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiotics $52: 20 \sim 24, 1999$

- TAKAHASHI, A.; H. NAKAMURA, T. KAMEYAMA, S. KURASAWA, H. NAGANAWA, Y. OKAMI, T. TAKEUCHI, H. UMEZAWA & Y. IITAKA: Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. II. Physico-chemical properties and structure determination. J. Antibiotics 40: 1671~1676, 1987
- 3) MATSUNAGA, S.; K. SHINODA & N. FUSETANI: Cribrochalinamine oxides A and B, antifungal β -substituted pyridines with an azomethine *N*-oxide from a marine sponge *Cribrochalina* sp. Tetrahedron Letters 34: 5953 ~ 5954, 1993
- RICHARD, J. M. & U. JACQUES: Mass spectrometry of orellanine, a mushroom toxin, and of related bipyridine-*N*-oxides. Biomed. Mass Spectrom. 18: 1~4, 1989
- MEYER, J.-M. & M. A. ABDALLAH: The siderochromes of non-fluorescent Pseudomonads: Production of nocardamine by *Pseudomonas stutzeri*. J. Gen. Microbiol. 118: 125~129, 1980
- FEISTNER, G. F.; D. C. STAHL & A. H. GABRIK: Proferrioxamine siderophores of *Erwinia Amylovora*. A capillary liquid chromatographic/electrospray tandem mass spectrometric study. Org. Mass Spectrom. 28: 163~175, 1993
- REISSBRODT, R.; W. RABSCH, A. CHAPEAUROUGE, G. JUNG & G. WINKELMANN: Isolation and identification of ferrioxamine G and E in *Hafnia alvei*. Biol. Metals 3: 54~60, 1990